\qquad

1. The area of a circle is $81 \pi x^{2}$. What is the area of the shaded region? Write your answer in factored form.
2. Find the area of the shaded region.

3. \qquad
4. \qquad
5. The height of a poster is three times its width. You want a 5 inch frame for the poster. Write a variable expression in factored form for the area of the frame alone.
6. \qquad
7. You have a pool that is 11 feet by 17 feet. You want a sidewalk with a uniform width of x to go around the pool. What is the variable expression for the area of the sidewalk in factored form?
8. \qquad
9. A shipping box in the shape of a rectangular prism has a volume of $18 x^{3}+5 x^{2}-2 x$. What are three expressions that can represent possible dimensions of the shipping box?
10. \qquad
11. A triangle has a base of $(2 x-3)$ and a height of $(3 x+6)$. What is the area of the triangle?
12. \qquad
13. The area of a television is given by the trinomial $4 v^{2}+4 v-15$. The television's length is $2 v+5$. What is the width?
14. \qquad
15. The perimeter of a rectangle is $8 x^{2}+4 x-2$. What is the length of the rectangle if the width is $2 x-1$?
16. \qquad
17. An isosceles, right triangle has an area of $2 x^{2}+8 x+8$. What is the length of one of the congruent sides of the triangle?
18. \qquad

Simplify each product.

10. $(6 t-5)^{2}$ \qquad 11. $\left(7 k^{2}+5 m\right)\left(7 k^{2}-5 m\right)$

Factor completely. If the polynomial cannot be factored, write prime.
12. $9 t^{2}-49$
13. $36 n^{2}+60 n+25$
14. $25 t^{3}-20 t^{2}+4 t$
15. $7 y^{2}+11 y-6$
16. $10 x^{2}-53 x-11$
19. $16 m^{4}-81$
20. $144 x^{2}-72 x+9$
18. $12 n^{3}-3 n^{2}+16 n-4$
21. $6 r^{3}+15 r^{2}+8 r+20$
22. $10 c^{3}-12 c^{2}+15 c-18$
23. $16 w^{3}+8 w^{2}+28 w+14$
24. $2 m^{2}+24 m+70$
25. $4 z^{2}-16 z+15$
26. $2 y^{2}-8 y-24$
27. Error Analysis Describe and correct the error made in simplifying the product:

$$
\left(2 h^{2}+6 k\right)\left(2 h^{2}-6 k\right)=4 k^{4}+24 h^{2} k-36 k^{2}
$$

1. The area of a circle is $81 \pi x^{2}$. What is the area of the shaded region? Write your answer in factored form.
2. $x^{2}(400-81 \pi)$

3. Find the area of the shaded region.

$$
\begin{gathered}
(3 x+4)^{2}-(2 x)^{2} \\
9 x^{2}+24 x+16-4 x^{2} \\
5 x^{2}+24 x+16
\end{gathered}
$$

$$
400 x^{2}-8 / \pi x^{2}
$$

2. $5 x^{2}+24 x+16$
3. The height of a poster is three times its width. You want a 5 inch frame for the poster. Write a variable expression in factored form for the area of the frame alone.

$$
(3 w+10)(w+10)-3 w^{2}
$$

$$
3 w^{2}+30 w+10 w+100-3 w^{2}
$$

$$
40 w+100=20(2 w+5)
$$

3. $20(2 w+5)$
4. You have a pool that is 11 feet by 17 feet. You want a sidewalk with a uniform width of x to go around the pool. What is the variable expression for the area of the sidewalk in factored form?

$$
\begin{aligned}
& (2 x+17)(2 x+11)-187 \\
& 4 x^{2}+56 x+187 \\
& 4 x(x+14)
\end{aligned}
$$

4. \qquad $4 x(x+14)$
5. A shipping box in the shape of a rectangular prism has a volume of $18 x^{3}+5 x^{2}-2 x$. What are three expressions that can represent possible dimensions of the shipping box?

$$
\begin{aligned}
& x\left(18 x^{2}+5 x-2\right) \\
& x(2 x+1)(9 x-2)
\end{aligned}
$$

5. $x(2 x+1)(9 x-2)$
6. A triangle has a base of $(2 x-3)$ and a height of $(3 x+6)$. What is the area of the triangle?

$$
\begin{gathered}
\frac{1}{2}(2 x-3)(3 x+6) \\
6 x^{2}+3 x-18 \\
3 x^{2}+3 / 2 x-9
\end{gathered}
$$

6.

$$
3 x^{2}+3 / 2 x-9
$$

\qquad
7. The area of a television is given by the trinomial $4 v^{2}+4 v-15$. The television's length is $2 v+5$. What is the width?

$$
\begin{gathered}
4 x^{2}+4 x-15 \\
(2 x+5)(2 x-3)
\end{gathered}
$$

7. \qquad $2 v-3$
8. The perimeter of a rectangle is $8 x^{2}+4 x-2$. What is the length of the rectangle if the width is $2 x-1$.

$$
\begin{gathered}
8 x^{2}+4 x-2=2(l+\omega) \\
4 x^{2}+2 x-1=l+\omega
\end{gathered}
$$

8. \qquad
9. An isosceles, right triangle has an area of $2 x^{2}+8 x+8$. What is the length of one of the congruent sides of the triangle?

$$
f_{1} \quad \begin{aligned}
b=h \quad \frac{1}{2} b^{2}= & 2 x^{2}+8 x+8 \\
= & 4 x^{2}+16 x+16 \\
& (2 x+4 x(2 x+4)
\end{aligned}
$$

9. \qquad

Simplify each product.
10. $(6 t-5)^{2}$
$36 t^{2}-60 t+2511 .\left(7 k^{2}+5 m\right)\left(7 k^{2}-5 m\right)$

$$
49 k^{4}-25 m^{2}
$$

Factor completely. If the polynomial cannot be factored, write prime.
12. $9 t^{2}-49$

$$
(3 t-7)(3 t+7)
$$

15. $7 y^{2}+11 y-6$

$$
(7 y-3 x y+2)
$$

18. $12 n^{3}-3 n^{2}+16 n-4$

$$
\frac{3 n^{2}(4 n-1)+4(4 n-1)}{\left(3 n^{2}+4\right)(4 n-1)}
$$

21. $6 r^{3}+15 r^{2}+8 r+20$

$$
\begin{aligned}
& 3 r^{2}(2 r+5)+4(2 r+5) \\
& \left(3 r^{2}+4\right)(2 r+5)
\end{aligned}
$$

24. $2 m^{2}+24 m+70$

$$
\frac{2\left(m^{2}+12 m+35\right)}{2(m+5)(m+7)!}
$$

13.

$$
\begin{aligned}
& 36 n^{2}+60 n+25 \\
& (6 n+5)(6 n+5) \\
& (6 n+5)^{2}
\end{aligned}
$$

16. $10 x^{2}-53 x-11$

$$
(5 x+1)(2 x-11)
$$

19. $16 m^{4}-81$

$$
\text { 19. } \begin{aligned}
& \left.1 m^{4}-81\right) \\
& \frac{\left(4 m^{2}-9\right)\left(4 m^{2}+9\right)}{\left(4 m^{2}+9\right)(2 m+3)(2 m-3)}
\end{aligned}
$$

22. $10 c^{3}-12 c^{2}+15 c-18$

$$
2 c^{2}(5 c-6)+3(5 c-6)
$$

$$
\left(2 c^{2}+3\right)(5 c-6)
$$

25. $4 z^{2}-16 z+15$

$$
(2 z-3)(2 z-5)
$$

20. $144 x^{2}-72 x+9$

$$
\begin{aligned}
& 9\left(16 x^{2}-8 x+1\right) \\
& 9(4 x-1)(4 x-1) \\
& \left(9(4 x-1)^{2}\right)
\end{aligned}
$$

14. $25 t^{3}-20 t^{2}+4 t$

$$
\begin{aligned}
& t\left(25 t^{2}-20 t+4\right) \\
& t(5 t-2)(5 t-2)
\end{aligned}
$$

17.

$$
\frac{t(5 t-2)^{2}}{112 n^{2}-63}
$$

$$
\frac{7\left(16 n^{2}-9\right)}{7(4 n-3)(4 n+3)}
$$

$\frac{\left(9(4 x-1)^{2}\right.}{} \frac{1}{3}+8 w^{2}+28 w+14$
23. $\begin{aligned} & 16 w^{3}+8 w^{2}+28 w+14 \\ & 2\left(8 w^{3}+4 w^{2}+14 w+7\right) \\ & 2\left(4 w^{2}(2 w+1)+7(2 w+1)\right)\end{aligned}$

$$
2\left(4 \omega^{2}+7\right)(2 w+1)
$$

26. $2 y^{2}-8 y-24$

$$
\begin{aligned}
& 2\left(y^{2}-4 y-12\right) \\
& 2(y+2 x y-6)
\end{aligned}
$$

27. Error Analysis Describe and correct the error made in simplifying the product:

$$
\begin{aligned}
& y^{\left(2 h^{2}+6 k\right)\left(2 h^{2}-6 k\right)=4 k^{4}+24 h^{2} k-36 k^{2}} \\
& 4 h^{6}-12 k h^{2}+12 k h^{2}-36 k^{2}
\end{aligned}
$$

(1) Wrong variable on first term.
(2) Added a positive $12 \mathrm{kh}^{2}$ to a positive $12 \mathrm{kh}^{2}$ when they are actually opposites that sum to zero.
\qquad
\qquad
\qquad

